
www.manaraa.com

Software Components for Computer Algebra

Pietro Iglio Giuseppe Attardi
via Nasini 12

I-00156 Roma, Italy
Dipartimento di Informatica

corso Italia 40, I-56125 Pisa, Italy
iglio@fub.it attardi@di.unipi.it

Abstract
Software components encourage code reuse and

simplify application development. An increasing
number of applications is built assembling components
developed by third parties, taking advantage of
language-independence, object orientation, ease of use
and other features of modern component architectures.

Computer algebra systems could exploit the
software component approach, but several issues must
be addressed, mostly due to the sophisticated data
structures required for representing mathematical
objects. We discuss these problems and present a
proposal based on the OpenMath specifications.

We built an prototype framework for developing and
using mathematical components. The framework uses
IDL from CORBA for specifying the interfaces for
objects. Code developed in the framework is mapped
into either the COM object model for creating ActiveX
components or into CORBA objects for creating servers
implemented as dynamic modules.

1. Introduction

A major trend in the evolution of software
technology has been to favour code reuse in writing new
applications. Modular programming and object oriented
programming provided only a partial solution to this
problem.

Recently a new approach, centred on the concept of
software component, has emerged as a successful
technology for building modular and reusable code.
Software components mimics the metaphor of electronic
components: engineers design electronic devices by
combining off- the-shelf components, whose behaviour
and characteristics are precisely specified, and which
have been tested separately, and connect their pins
according to their specifications, without knowledge of
their internal details.

From a technical point of view, a software
component is similar to an object in an object oriented
programming language. However a component is
generally language-independent, is distributed in the
form of a binary library and can be dynamically added
to the component tool box of many modern development
tools. To achieve this feature a software component has
two separate interfaces: a configuration interface and a

programming interface. The programming interface is
used at run time by applications of the component. The
configuration interface is used during application
development by program development tools for
inspecting a component, i.e. determining which
methods, properties and events it exports, and allowing
the user to select parameters for configuring the
component in the application, for instance its
initialisation parameters or its graphics properties. This
abilit y to integrate software components with minimal
effort is probably a major reason for their success. A
component can be dealt with any of the several
development tools which support component, so
programmers are not bound to a specific programming
environment nor to a specific programming language. A
large number of third party components is already
available and so building complex applications is often
just a matter of selecting suitable components and
assembling them with simple point-and-click operations.

The most prominent component architectures are
currently JavaBeans [JVB] and Microsoft
ActiveX/COM [BRO, DEN].

JavaBeans is the platform-neutral, component
architecture for the Java language. Its popularity is
partially due to the popularity of this language. The
platform independence is achieved by means of an
intermediate bytecode which is interpreted by the Java
Virtual Machine, with a consequent loss of performance
(however, modern Java platform address this problem
with Just-In-Time compilers). JavaBeans is a recent
technology, but is quite well designed. Several
development tools already support JavaBeans, including
visual environments which enable connecting
components to build applications through a graphical
interface.

ActiveX/COM is the component architecture of
Microsoft. This architecture is in wide use and a large
number of components and applications are based on
this standard. However, it is limited to Windows
platforms (even though recently Software AG has
released a UNIX version [ENT]) and it is based on an
object model which does not support inheritance.

Other component architectures are IBM SOM
[SOM] and OpenDoc [OPE], both based on the CORBA
specifications [COR]. CORBA (Common Object
Request Broker Architecture), is a distributed object

www.manaraa.com

2

computing infrastructure, defined by the Object
Management Group. CORBA allows transparent access
to objects distributed over a network, and provides a set
of services and faciliti es to locate objects, to activate
them remotely.

Despite its advantages, the software component
paradigm has been rarely considered in the field of
computer algebra. One example is the PolyMath library
[JOL], a library written in Java which implements the
basic OpenMath standard. The component model for
PolyMath is, of course, JavaBeans. The work done for
the PolyMath library is, in some respects, similar to the
work presented here.

The purpose of this paper is to examine the problems
related to the peculiarities of mathematical software and
to propose an architecture for mathematical software
components.

In the next section we introduce the concept of
mathematical component, In section 3 we show how
abstract interfaces can address the problem of data
representation. In section 4 and 5 we describe how
OpenMath objects can been specified using the OMG
Interface Definition Language, while in section 6 we
provide specifications for mathematical components. In
section 7 we present a framework for developing
mathematical components along the lines discussed
earlier. In sections 8 and 9 we ill ustrate how the
framework is mapped into an object model and present
some tools to help programmers in this task.

2. Mathematical Components

Computer algebra systems could take advantage of a
component architecture that supports mathematical
components, i.e. software components representing
mathematical objects and algorithms.

Consider the following problem: implementing a
particular algorithm and making it available to the
mathematical community. Since there are several
computer algebra systems in use, one would have to
code the algorithm in each of these systems, using their
specific extension language. Alternatively one could use
sockets to exchange input/output data between the
computer algebra system and an external program
implementing the algorithm.

Both approaches have drawbacks: in the first case
one has to re-code the algorithm several times, one for
each computer algebra systems to support; moreover,
many extension languages are interpreted and so this
solution does not provide the uttermost eff iciency. In the
second case, the socket-based approach, one must define
a communication protocol for exchanging mathematical
data and implement the client side of the protocol for
each computer algebra system; moreover, there can be
significant communication overheads: if the
computation is simple or the data are large, the time
spent to send and receive the mathematical structures
can be longer than the computation time.

As far as the communication protocol is concerned,
there are several attempts to standardise the
representation of mathematical objects. One of them is
the OpenMath Consortium [OMA], whose goal is to
define a platform-independent standard for the
representation of mathematical objects so that they may
be exchanged in a meaningful way between various
software tools. A diagram showing two programs
communicating with each other using the OpenMath
protocol is shown in figure 1.

Specific
Representation

Specific
Representation

Encoded
Object

Encoded
Object

Open Math
Object

Open Math
Object

Program A Program B

Phrase Book Phrase Book

communication

shortcut

Figure 1: The OpenMath Architecture

A Phrase Book is software which translates the
application specific representation into OpenMath
objects and vice versa. The OpenMath objects are
recursive data structures describing mathematical
objects. Their formal definition is given by one or more
Content Dictionaries (CDs). The OpenMath objects are
encoded in byte streams. OpenMath compliant
implementations must support SGML encoding. An
example of SGML encoding for the mathematical
expression sin(x+y) is: <sin> <plus> x y </plus>

</sin>.
Our approach is based on the OpenMath proposal,

and can be considered as a particular implementation of
it. Most current implementation of OpenMath, in fact,
employ the socket-based approach, while our proposal
defines a plug-in interface so that binary components
can be dynamically loaded into any compliant computer
algebra system, providing an extension to its kernel.

The advantages of a similar solution are:

• a market for third party mathematical components
could be established, since a single component could
target several computer algebra systems at once;

• certain algorithms within computer algebra systems
could be replaced with improved versions;

• mathematical components can be used directly
within any computing environment, not necessarily
a computer algebra one.

The dynamic loading of a software module is not
itself a problem and is already possible with some
systems. For instance, the MuPAD system [MUP]
already supports a similar mechanisms, called dynamic
modules [SOR] and based on the concept of shared

www.manaraa.com

3

library. A dynamic module must be written in C or C++,
according to some specifications, then compiled and
linked into a shared library by means of a specific tool.
Such module can be loaded and unloaded into the
MuPAD environment as needed, and it becomes like a
kernel extension.

However, such modules cannot be used by other
computer algebra systems, since the procedures within a
dynamic module directly access the native data
representation of the MuPAD system. For instance a
dynamic module for polynomials must be programmed
either to use the MuPAD representation for polynomials
or to convert them into its own format. In both cases,
one cannot use the same component with another
computer algebra system.

Therefore, data representation and conversion for
mathematical objects is a major issue for building
system-independent components.

3. Separating Interfaces from
Implementations

Mathematical structures can be implemented in a
number of ways. If a computer algebra system
represents a polynomial as lists of monomials and a
component represents them as vectors of monomials,
how can the computer algebra system pass polynomials
to the component and interpret the result of the
computation?

To address the problem we resort to one of the basic
tenets of object oriented programming: separating
interfaces from implementations. Interfaces provide
methods to access the mathematical structures in an
abstract way, without any assumption on the underlying
implementation. Considering the previous example, if
the client (e.g. the computer algebra system) provides
access to its mathematical objects through an abstract
interface, the server (the component) can access the
object through that interface, for instance it can access
the n-th monomial of a polynomial without knowing
whether it is represented as a list or as a vector.

The C++ language provides a mechanism for
separating interfaces and implementations by means of
abstract classes. The above example could be written as
follows:

// Abstract Interface for Polynomials
class IPoly {

virtual IMonom& getMonomial(int n) = 0;
...

};

// First implementation
class PolyAsList : public IPoly {
private:

List<IMonom> monomials;

public:
virtual IMonom& getMonomial(int n) {

return monomials.getNth(n);
}

}
// Second implementation
class PolyAsVector : public IPoly {

private:
Vector<IMonom> monomials;

public:
virtual IMonom& getMonomial(int n) {

return monomials[n];
}

}

Using a common abstract interface, the computer
algebra system and the component could share
polynomials. Both will use, for example:

poly->getMonomial(0)

to access the first monomial, irrespectively of
whether the polynomial is represented as a list or as
vector.

4. Object Interface Specifications

Starting from the OpenMath specifications, we wrote
interfaces for most of the objects in the Basic and Poly
CDs (in the rest of the paper we will refer to them as
OM objects), using the Interface Definition Language
(IDL) [COR], developed by the Object Management
Group (OMG).

IDL is part of the CORBA architecture, introduced
in section 1. Using IDL to define object interfaces has
some potential advantages over using C++, in particular:

• IDL enforces a policy of separating interfaces and
implementation;

• IDL can be mapped in a natural way to more than
one programming language; binding for C++, C,
Lisp, Java and other languages are currently
available;

• IDL provides platform independent specifications
for basic data types;

• from IDL code can be automatically generated for
basic methods like serialization, stubs for remote
procedure invocation, etc.

Furthermore, IDL supports inheritance and its syntax
is very similar to the C++ class declaration syntax. The
main differences are the use of the keyword interface
instead of the keyword class, the absence of private and
protected inheritance, and the specification of in, out or
inout for parameter types in method declarations. Such
attributes specify respectively a parameter passed from
client to server, from server to client and in both
directions.

IDL also defines a special template type:
sequence<T [, max_size]>, representing a one-
dimensional array of type T. If a maximum size is
specified, then the sequence is a bounded sequence.

The IDL specifications for OM objects provides the
basic operations to access, traverse, modify and copy
objects.

In the definition of object interfaces we followed as
much as possible the current OM definition. For

www.manaraa.com

4

instance, since a OM distributed multivariate polynomial
is defined as follows:

<CDDefinition>
 <Name> DMP </Name>
 <Description>
 The constructor of DMPs. The first argument is the

polynomial ring containing the polynomial and the second is a
"SDMP". Should be of the form DMP(PolyRing(...), SDMP(...))

 </Description>
 <FunctorClass> Constructor, Binary </FunctorClass>
</CDDefinition>

we have defined an interface IDMP (where “I” is the
prefix for interfaces) as follows:

interface IDMP : IObj {
IPolyRing getPolyRing();
void setPolyRing(in IPolyRing pr);
ISDMP getSDMP();
void setSDMP(in ISDMP sdmp);

};

For each object subcomponent, a pair of (set, get)
methods has been specified to retrieve and assign the
subcomponent, such as getSDMP()/setSDMP() in the
previous example.

The root of the inheritance diagram for OM objects
is the IObj interface, from which they inherit methods
common to all OM objects. The main methods exported
by IObj are:

copy(): performs a deep copy of the object; the copy is
performed using a factory object supplied as
argument (see next section), that will be used to
create the new object. This allows creating a
copy of a given object in an alternative
implementation.

serialize(): generates an OpenMath SGML
encoding that can be saved into a text file or sent
to a remote OpenMath server. This way it is
possible to get interaction between programs
using implementation of our interfaces and
stream-based servers;

equals(): checks structural equivalency between
two objects. The result can be true, false or
dontKnow. The dontKnow value is returned in
case the equivalence between the two
mathematical objects cannot be established;

getAttributes(), setAttributes(): to access/modify
the sequence of attributes associated to the object
(attributes are a requirement of the OpenMath
standard);

All atomic objects, such as integers and strings,
inherit directly from IObj, as well as any other type
defined in additional CDs.

OpenMath needs also the abilit y to represent
expressions, which may be passed between algebra
systems for evaluation or to typesetting or graphics
systems for display. Such expressions are represented by
means of the class OMExpr, which has three subclasses

OMConstant, OMVariable, OMTerm. The last one is used
to represent functional expressions and provides the
following interface:

OMExpr getFunctor(in OMTerm);
void setFunctor(in OMTerm, in OMExpr);
OMExpr getParameter(in OMTerm, in

long);
void setParameter(in OMTerm, in long,

in OMExpr);

Since the current OM specifications does not provide
a complex type hierarchy, we decided to keep the
inheritance diagram as simple as possible to reflect that
choice. Inheritance has been mostly used to simpli fy the
implementation of interfaces, and not to detect type
errors at compile-time. For instance, since there is no
category for polynomial coeff icients in the OpenMath
specifications, constructors in our specifications allow
building a monomial with any OM object as coeff icient.
Each implementation is responsible to perform run time
checks to detect errors.

The OpenMath object architecture allows
manipulating objects directly through their interface,
without having to transform them into the generic
OpenMath representation, as shown in Figure 2.

Specific
Representation

Specific
Representation

Encoded
Object

Encoded
Object

OO Interface OO Interface

Program A Program B

communication

direct access

Figure 2: OpenMath Objects Interactions

5. Building OM Objects

Some special objects, called factory objects, provide
methods to create other OM objects. Since the
OpenMath specifications groups objects into Content
Dictionaries (CD), our specifications associates factory
objects to CDs. The IBasicCD interface provides
methods to build OM objects belonging to the Basic
CD, for instance:

IInteger createInteger(in long value);

while the IPolyCD interface provides methods to
build OM objects belonging to the Poly CD, such as:

IMonom createMonomial(in IObj coeff,
in long nExponents);

ISDMP createSDMP(in long nMonomials);

Factory objects, provide a mean to select among
different implementations at run time. For instance, the
following function shows a possible use of the IBasicCD
factory:

www.manaraa.com

5

foo(IBasicCD* basicCD)
{
 IInteger* one =
 basicCD->createInteger(1);
 IInteger* two =
 basicCD->createInteger(2);

 OMExpr sum =
 basicCD->createTerm("plus", 2);
 sum->setParameter(one, 0);
 sum->setParameter(two, 1);

 cout << sum->serialize() << " = "
 << basicCD->plus(a, b);
}

Passing an IBasicCD factory to the above function
will output:

<plus> 1 2 </plus> = 3

since sum will be an OM object corresponding to the
expression 1 + 2. Serialising an object returns its
external representation, in our case an SGML
representation.

By using factories, the framework can also provide a
general conversion facilit y between object
representations, via the method copy(). This method
accepts as argument the factory for the target
representation: it traverses recursively the object and
reconstructs a copy of it using the supplied factory. For
instance, given the factories for two implementations of
the PolyCD, PCD1 and PCD2, we can build a polynomial
in the first one, convert it to the second and add it to
another polynomial in the second implementation:

p1 = PCD1->createPoly("3x2+y");
p2 = PCD2->createPoly("5x+y3");
p3 = p1->copy(PCD2);
p3->add(p2);

6. Component Interface

Our framework provides also a configuration
interface to the component, which is required for the
packaging and distribution of mathematical components.
Methods from these interfaces allow a computer algebra
system to retrieve information about the component such
as version, author, copyright. It is typical of
development tools supporting software components to
provide such inspecting feature. In Java most of the
information for inspection is obtained through
introspection.

We also provide a second interface which helps
organising libraries which export a large number of
functions.

The two interfaces for mathematical components are
IComponent and Ipackage, as shown in figure 3.

getContentDictionary() returns the factory of a
component. For instance, if comp is a reference to a
IComponent object:

IBasicCD* basic =
 comp->getContentDictionary(OM_BASIC_CD);

IInteger* val = basic->createInteger(10);

will create an integer using the component
implementation for multiple precision integers.

interface IComponent {
 IContentDictionary getContentDictionary
 (in OmContentDictionaryId cdId);

 IPackage getPackage(in string
 interfaceName);
 IPackageSeq getPackages();

 void init();
 void finish();

 string getName();
 short getVersion();
short getInternalVersion();

 string getAuthor();
 string getCopyright();
 boolean getLicencing();

 string getURL();
};

interface IPackage {
 IObj invoke(in string method,
 in IObjSeq parameters);
 short getVersion();
short getInternalVersion();

 string getAuthor();
 string getCopyright();
 boolean getLicencing();
};

Figure 3: IComponent and IPackage interfaces

In a component a set of functions concerning a
particular mathematical area can be grouped into
packages. The method getPackages() returns the
sequence of all packages included in the component. A
client program can examine individually each package
using the methods in IPackage. The method
getPackage() retrieves a package given its name, e.g.:

IPackage* linalg =
 comp->getPackage("Linear Algebra");

The methods init() and finish() are used for
component initialisation/finalisation, while getName(),
getVersion(), getAuthor(), getCopyright() and
getLicencing() are used to retrieve general
information about the component. The method
getURL() allows a client program to connect with a
remote server (such as an Internet Web server) to
download updated version of the component.

The only relevant method for the IPackage interface
is invoke(), which allows dynamic invocation based on
the function name passed as a string. This method is
useful for invoking package functions from within
scripting languages, such as those available with many
computer algebra systems.

Each package will be describe by an interface
derived from the interface IPackage, which lists the
functions exported by a package. For example:

www.manaraa.com

6

class IPackagePoly : public virtual IPackage
{
 // Implementation for IPackage methods
 string getName() {

return "Polynomial Package";
 }
 ...
 // User methods
 ISDMP* algorithm1(IMonom* mono);
 IDMP* algorithm2(IInteger* val);
 ...
};

describes a package which includes implementations
for methods algorithm1(), algorithm2().

7. The O3 Framework

We built an experimental framework, called O3,
which provides a C++ implementation of the above
interfaces.

The framework consists in:

• a set of abstract implementations, i.e. classes which
provide an implementation of some abstract
interfaces in order to simpli fy the development of
actual implementations;

• a concrete implementation of a subset of the OM
interfaces.

The relationships between abstract interfaces,
abstract implementations and implementations are
shown in figure 4. Abstract interfaces are represented by
C++ abstract classes. Abstract implementations provide
a default implementation for some methods, reducing
the code to be written for custom implementations.
Abstract implementations have the “Om” suff ix. The
OmObj class is the abstract implementation for IObj and
provides default implementation for methods such
copy(), serialize(), equals(). OmSDMP is the concrete
interface for the simple distributed multivariate
polynomial and OmSDMPa and OmSDMPb are two possible
different implementations of the same interface.

IObj

IIntegerISDMP

OmObj

OmExprOmSDMP

Interfaces

Abstract
Implementations

OmSDMPbOmSDMPa

Implementations

OmInteger

Figure 4: O3 Inheritance Diagram

The final result is a set of abstract classes from
which a custom implementation can inherit, thereby

reducing the amount of code to be written. For instance,
by inheriting from class OmMonom, implementing
interface IMonom requires just writing implementations
for constructors get/setCoefficient() and methods
get/setExponent().

The concrete implementation includes the
constructors for objects specified in the Basic and Poly
CD, according to the OpenMath specifications version
1.2.

8. Mapping O3 to an object model

The elements of the O3 framework must be mapped
to an actual object model. For lack of a satisfying
component model encompassing both Windows and
Unix, we decided to produce two mappings, one to
COM through the ATL (ActiveX Template Library) for
Windows and one we decided to produce two mappings,
one to COM through the ATL (ActiveX Template
Library) for Windows and one to CORBA for Unix,
using shared libraries to create dynamic modules.

ATL [ATL] is a lightweight class library for building
ActiveX components. To use ATL, we must translate
IDL interfaces into Custom OLE Interfaces, which
consists of C++ definitions plus additional annotations
required for building the methods maps of the ActiveX
component. This task can be done by a modified version
of an IDL compiler. For instance, the concrete class
CMonomial will contain:

BEGIN_COM_MAP(CMonomial)
COM_INTERFACE_ENTRY(IMonomial)

END_COM_MAP()

Similarly, accessing the factory of a component, like
PolyCD, is performed like this:

CoCreateInstance(CLSID_CPolyCD, NULL,
CLSCTX_INPROC_SERVER,
IID_IUnknown,(void**)&polyCD);

while creating a monomial with such factory
involves:

polyCD->QueryInterface(IID_IMonomial,
(LPVOID*)&pMon);

This code can be obtained through preprocessing
from a single set of IDL and C++ source. After
preprocessing, this code can be given to the C++
compiler for Windows to produce an ActiveX software
component, which can be registered and used in any
component based application. For instance such
component can be embedded into a spreadsheet and be
used to perform symbolic computations whose input and
output are exchanged through cells of the spreadsheet.
We have carried out an experiment of this kind with the
PoSSo library [POS], using it as a component to
compute the Gröbner basis of polynomials entered in an
Excel worksheet, with part of the output being displayed
graphically in a chart, created by means of a chart
component, as shown in Figure 5.

www.manaraa.com

7

For Unix we use a CORBA implementation based on
dynamic modules that can be loaded at runtime. The
IDL interfaces are automatically translated into C++
objects. This way it is possible to take advantage of
some features of CORBA, such as runtime type
information, reference counting, and safe type cast.

Currently we are not using object distribution
capabiliti es of CORBA, since our primary goal is to
maximise performance. Thus we are connecting clients
and server components through dynamic modules.
Accessing a factory is just instantiation of a class and
the rest are ordinary method calls. This does not give us
the full power of components since for instance it li mits
us to code written in C++ and compiled with the same
compiler, due to the idiosyncrasies of different C++
compilers. However, this problem could be addressed
using distributed objects, i.e. keeping the client and the
server in two separate addressing spaces and using the
ORB to connect them. This way, of course, there is a
performance overhead. Note that, since changing our
implementation to enable object distribution would
require minimum changes.

With ATL components instead it is possible to
combine components written in languages such as C,
Java or Lisp for which there is an off icial IDL mapping.
An OLE component, written in any programming
language, which implements the OpenMath Object
specifications, can be used by our mathematical
components. The abilit y to use different languages for
clients and servers is indeed one of the major attractions
of software components.

9. O3 tools

To support program development with the
framework we developed a set of programming tools:

• an IDL compiler to C++ and to ATL
• an IDL documentation tool, which generates LaTeX

documentation from comments in the IDL source
• a visual IDL generator tool, for creating interfaces

for OM components, without detailed knowledge of
the IDL syntax.

The IDL compiler and documentation tool are based
on tools from a public domain implementation [FRE] of
CORBA.

The IDL generator is a tool we developed to help
specifying interfaces to mathematical components
without knowing the precise IDL syntax. Some screen
shots are shown in figure 6. It is possible to specify the
component name, the set of exported packages and, for
each package, the list of exported methods. Parameters
and return type for each method can be selected from a
list of available types. The IDL generator is not essential
for writing components, since the IDL specifications can
be written with a text editor. The IDL generator is being
further developed and a cross-platform version will be
built i n Java (currently the generator is available for
Win95/NT).

The current version of the O3 framework is available
for Sun Solaris, Linux and Windows 95/NT platforms.

Figure 5: Mathematical component inside Excel

www.manaraa.com

8

10. Conclusions and Future Work

We aimed at showing that, once a standard interface
for mathematical objects is specified, mathematical
software can be developed which is independent from a
specific object implementation. This approach goes one
step further than current OpenMath implementations,
since mathematical objects are not exchanged through a
textual representation sent over a data stream. This
provides a high level view of mathematical objects and
different implementations thereof can coexist within the
same program. Furthermore, it is possible to avoid the
network overhead by using a component architecture in
which different modules can eff iciently exchange object
references within the same address space.

Our experience may lead to the proposal of an IDL
specifications for the OpenMath standard. This will
require of course interactions with other groups (such as
people working on the PolyMath library) in order to
meet different requirements. Interface standardisation is
a fundamental requirement to achieve interoperabilit y of
components from different sources.

We would like also to experiment the O3 framework
with ActiveX also on Unix, for instance using EntireX
DCOM.

In order to prove the viabilit y of the approach, we
plan to extend one of the current computer algebra
systems with the abilit y to dynamically load
mathematical components, providing a simple mean to
use components.

Providing access and support for mathematical
components in computer algebra systems is a promising
approach to extend their viability.

Acknowledgments

This work was carried out within ESPRIT project
FRISCO. We thank prof. Carlo Traverso and Tito
Flagella for many useful discussions and suggestions
about software components for computer algebra.

References

[ABO] Abbott J., van Leeuwen A., Strotmann A.,
“Objectives of OpenMath” , Technical Report
12, RIACA, 1996.

[ATL] Grimes, Stockton, Reill y G. V., and
Templeman, “Beginning ATL COM
Programming” , Wrox Press, 1988.

[BRO] Brockschmidt K., “ Inside OLE”, 2nd edition,
Microsoft Programming Series, Microsoft
Press, 1995.

[COR] CORBA 2.0 Specifications, Object
Management Group, http://www.omg.org

[DAL] Dalmas S., Gaetano M., Watt S. M., “An
OpenMath 1.0 Implementation” , in
Proceedings of ISSAC’97, ACM press, July
1997.

[DEN] Denning A., “OLE Controls Inside Out” , 2nd

edition, Microsoft Programming Series,
Microsoft Press, 1995.

[ENT] Software AG, EntireX DCOM,
http://www.softwareag.com/corporat/solutions/entirex

[FRE] Linton M., Pan D. Z., “ Interface translation and
Implementation Filtering” , Proceedings of
USENIX C++ Conference, 1994, 227–236

[JOL] The Java OpenMath Library, version 0.3,
http://pdg.cecm.sfu.ca/openmath/lib/

[JVB] JavaBeans Specifications, version 1.01,
http://www.javasoft.com/beans/docs/spec.html

[MUP] MuPAD – a Computer Algebra System,
http://www.mupad.de

[OMA] OpenMath Home Page, http://www.openmath.org
[OPE] OpenDoc, http://www.software.ibm.com/ad/opendoc

[POS] Attardi G., Traverso C., “The PoSSo Library
for Polynomial System Solving” , Proc. of
AIHENP95, World Scientific Publishing
Company, Singapore, 1995.

[SOM] SOMobjects Developer’s Toolkit,
Programmer’s Guide, available at
http://www.software.ibm.com/ad/somobjects

 [SOR] Sorgatz A., “Dynamic Modules - The Concept
of Software Integration in MuPAD”, in
Proceedings of IMACS'97, July 1997.

Figure 6: O3 IDL generator

