Software Components for Computer Algebra

Pietro Iglio
via Nasini 12
1-00156 Roma, Italy
iglio@fub.it

Abstract
Sdtware cmporents encourage @de reuse and
simplify appication devdopment. An increasing
number of apgications is built assembling comporents
devdoped by third paties, taking adantage of
language-independence, objed orientation, ease of use

and other features of modern component architectures.

Computer algebra systems could exploit the
software comporent approach, but seveal isuues must
be addresed, mostly due to the sophigticated daa
structures required for representing mathematical
objeds. We discuss these problems and pesent a
proposal based on the OpenMath specifications.

We built an prototype framework for devdoping and
using mathematical comporents. The framework uses
IDL from CORBA for spedfying the interfaces for
objeds. Code devdoped in the framework is mapped
into either the COM objed model for creating ActiveX
comporents or into CORBAobjeds for creating servers
implemented as dynamic modules.

1. Introduction

A magor trend in the evolution of software
technology has been to favour code reuse in writing rew
applicaions. Modular progranming and oljed oriented
progranming provided only a partial solution to this
problem.

Recently a new approac, centred on the concept of
software cmporent, has emerged as a successul
technology for building modular and reusable @de.
Software @mponents mimics the metaphor of eledronic
components: engineas design eledronic devices by
combining off-the-shelf components, whose behaviour
and charaderistics are predsely spedfied, and which
have been tested separately, and conned their pins
acording to their spedficaions, without knowledge of
their internal details.

From a technicd point of view, a software
component is smilar to an objed in an objed oriented
programming languege. However a @mponent is
generdly language-independent, is distributed in the
form of a binary library and can be dynamicaly added
to the component todl box of many modern devel opment
tods. To adhieve this feaure asoftware component has
two separate interfaces. a configuration interface and a

Giuseppe Attardi
Dipartimento di Informatica
corso Italia 40, 1-56125 Pisa, Italy
attardi@di.unipi.it

programrming interface The programming interfaceis
used at run time by applicaions of the component. The
configuration interface is used during applicetion
development by program development tods for
inspeding a @mponent, i.e. determining which
methods, properties and events it exports, and alowing
the user to seled parameters for configuring the
component in the @plicaion, for instance its
initiali sation parameters or its graphics properties. This
ability to integrate software components with minimal
effort is probably a mgjor reason for their success A
component can be dedt with any of the severa
development tools which suppat component, so
programmers are not bound to a spedfic programming
environment nor to a spedfic programming language. A
large number of third party components is arealy
available and so building complex applicetions is often
just a matter of seleding suitable cmponents and

assembling them with simple point-and-click operations.

The most prominent component architedures are
currently JavaBeans [JVB] and Microsoft
ActiveX/COM [BRO, DEN].

JavaBeans is the platform-neutral, component
architedure for the Java language. Its popularity is
partialy due to the popularity of this language. The
platform independence is adiieved by means of an
intermediate bytecode which is interpreted by the Java
Virtual Madhine, with a mnsequent lossof performance
(however, modern Java platform address this problem
with Just-In-Time mpilers). JavaBeans is a recent
technology, but is quite well designed. Severa
development tods already suppart JavaBeans, including
visual environments which enable @nneding
components to build applicaions through a graphicd
interface.

ActiveX/COM is the cmponent architedure of
Microsoft. This architedure is in wide use and a large
number of components and applicaions are based on
this gandard. However, it is limited to Windows
platforms (even though recently Software AG has
released a UNIX version [ENT]) and it is based on an
object model which does not support inheritance.

Other component architedures are IBM SOM
[SOM] and OpenDoc [OPE], both based on the CORBA
spedficaions [COR]. CORBA (Common Objed
Request Broker Architedure), is a distributed oljec

www.manaraa.com

computing infrastructure, defined by the Objed
Management Group. CORBA all ows transparent access
to oljeds distributed over a network, and provides a set
of services and fadliti es to locae objeds, to adivate
them remotely.

Degpite its advantages, the software mponent
paradigm has been rarely considered in the field of
computer algebra. One example is the PolyMath library
[JOL], a library written in Java which implements the
basic OpenMath standard. The cmponent model for
PolyMath is, of course, JavaBeans. The work done for
the PolyMath library is, in some respeds, similar to the
work presented here.

The purpose of this paper is to examine the problems
related to the peadliariti es of mathematica software and
to propose an architedure for mathematicd software
components.

In the next sedion we introduce the cncept of
mathematicd component, In sedion 3 we show how
abstrad interfaces can address the problem of data
representation. In sedion 4 and 5 we describe how
OpenMath objeds can been spedfied using the OMG
Interface Definition Languege, while in sedion 6 we
provide spedficaions for mathematica components. In
sedion 7 we present a framework for developing
mathematicd components along the lines discussed
ealier. In sedions 8 and 9 we illustrate how the
framework is mapped into an objed model and present
some tools to help programmers in this task.

2. Mathematical Components

Computer algebra systems could take alvantage of a
component architedure that suppats mathematicd
components, i.e. software @mponents representing
mathematical objects and algorithms.

Consider the following problem: implementing a
particular algorithm and making it available to the
mathematicd community. Since there ae severd
computer algebra systems in use, one would have to
code the dgorithm in ead of these systems, using their
spedfic extension language. Alternatively one could use
sockds to exchange input/output data between the
computer algebra system and an external program
implementing the algorithm.

Both approaches have drawbadks: in the first case
one has to re-code the dgorithm several times, one for
ead computer algebra systems to suppat; moreover,
many extension languages are interpreted and so this
solution does not provide the uttermost efficiency. In the
seond case, the socket-based approadh, one must define
a ommunication protocol for exchanging mathematicd
data axd implement the dient side of the protocol for
eadh computer algebra system; moreover, there can be
significant communication overheads: if the
computation is smple or the data ae large, the time
spent to send and recedve the mathematicd structures
can be longer than the computation time.

As far as the communication protocol is concerned,
there ae severa atempts to standardise the
representation of mathematicd objeds. One of them is
the OpenMath Consortium [OMA], whose goa is to
define a platform-independent standard for the
representation of mathematicd objeds that they may
be exchanged in a meaningful way between various
software tods. A diagram showing two programs
communicaling with ead other using the OpenMath
protocol is shown in figure 1.

Program A Program B
Specific Specific
Representation Representation
Phrase Book Phrase Book

A 4 hort t A
Open Math *__S__Oifu____’ Open Math
Object Object

\ 4 L A
St communication Encoded
Object Object

Figure 1: The OpenMath Ar chitecture

A Phrase Book is oftware which trandates the
applicdion spedfic representation into OpenMath
objeds and vice vesa. The OpenMath objeds are
reaursive data structures describing mathematicd
objeds. Their formal definition is given by one or more
Corntent Dictionaries (CDs). The OpenMath objeds are
encoded in byte streans. OpenMath compliant
implementations must suppat SGML encoding. An
example of SGML encoding for the mathematicd
expresson sin(x+y) is. <sin> <plus> x y </plus>
</ sin>.

Our approach is based on the OpenMath proposal,
and can be onsidered as a particular implementation of
it. Most current implementation of OpenMath, in fad,
employ the socket-based approad, while our proposal
defines a plug-in interface so that binary components
can be dynamicdly loaded into any compliant computer
algebra system, providing an extension to its kernel.

The advantages of a similar solution are:

e a market for third party mathematicd comporents
could be established, since asingle componrent could
target several computer algebra systems at once;

e certain agorithms within computer algebra systems
could be replaced with improved versions;

e mathematicd comporents can be used dredly
within any computing environment, not necessarily
a computer algebra one.

The dynamic loading of a software module is not
itself a problem and is arealy possble with some
systems. For instance the MuPAD system [MUP]
already suppats a similar mechanisms, cdled dynamic
modues [SOR] and based on the ncept of shared

www.manaraa.com

library. A dynamic module must be written in C or C++,
acording to some spedficdions, then compiled and
linked into a shared library by means of a spedfic toal.
Such module can be loaded and unloaded into the
MUPAD environment as neeled, and it beacomes like a
kernel extension.

However, such modules cannot be used by other
computer algebra systems, since the procedures within a
dynamic module diredly access the native data
representation of the MuPAD system. For instance a
dynamic module for paynomials must be programmed
either to use the MuPAD representation for polynomials
or to convert them into its own format. In both cases,
one canot use the same mmponent with another
computer algebra system.

Therefore, data representation and conversion for
mathematicd objeds is a mgor isue for building
system-independent components.

3. Separating I nterfaces from
I mplementations

Mathematicd structures can be implemented in a
number of ways. If a wmputer agebra system
represents a polynomial as lists of monomials and a
component represents them as veaors of monomials,
how can the mmputer algebra system pass polynomials
to the component and interpret the result of the
computation?

To addressthe problem we resort to one of the basic
tenets of objed oriented programming: separating
interfaces from implementations. Interfaces provide
methods to access the mathematicd structures in an
abstrad way, without any assumption on the underlying
implementation. Considering the previous example, if
the dient (e.g. the cmputer algebra system) provides
access to its mathematicad objeds through an abstraat
interface the server (the component) can access the
objed through that interface for instance it can access
the n-th monomia of a polynomial without knowing
whether it is represented as a list or as a vector.

The C++ language provides a medhanism for
separating interfaces and implementations by means of
abstrad classes. The dove example muld be written as
follows:

/'l Abstract Interface for Polynonials
class | Poly {
virtual | Mnom& get Monom al (int n) = 0;

b

/1 First inplenentation
class Pol yAsList : public IPoly {
private:

Li st <I Mononm®> nonom al s;

publi c:
virtual | Mnom& get Monomi al (int n) {
return nonom al s. get Nt h(n);
}

/1 Second inpl ementation
class, PolyAsVector . public |Poly {

private:
Vect or <I Mononm> nonomi al s;

publi c:
virtual | Mnom& get Monomi al (int n) {
return nonom al s[n];
}

}

Using a common abstrad interface the cmputer
algebra system and the @mponent could share
polynomials. Both will use, for example:

pol y- >get Monomi al (0)

to access the first monomial, irrespedively of
whether the polynomial is represented as a list or as
vector.

4. Object Interface Specifications

Starting from the OpenMath spedficaions, we wrote
interfaces for most of the objeds in the Basic and Poly
CDs (in the rest of the paper we will refer to them as
OM objeds), using the Interface Definition Language
(IDL) [COR], developed by the Objed Management
Group (OMG).

IDL is part of the CORBA architedure, introduced
in sedion 1. Using IDL to define objed interfaces has

some potential advantages over using C++, in particular:

» IDL enforces a palicy of separating interfaces and
implementation;

* IDL can be mapped in a natural way to more than
one programming languege; binding for C++, C,
Lisp, Java and dher languages are aurrently
available;

« IDL provides platform independent spedficaions
for basic data types;

» from IDL code can be attomaticdly generated for
basic methods like seridization, stubs for remote
procedure invocation, etc.

Furthermore, IDL supparts inheritance and its g/ntax
is very similar to the C++ classdedaration syntax. The
main differences are the use of the keyword i nter f ace
instead of the keyword cl ass, the a&sence of private and
proteded inheritance, and the spedficaion of i n, out or
i nout for parameter types in method dedarations. Such
attributes pedfy respedively a parameter passed from
client to server, from server to client and in both
directions.

IDL aso defines a speda template type:
sequence<T [, max_size]>, representing a one
dimensional array of type T. If a maximum size is
specified, then the sequence is a bounded sequence.

The IDL spedficaions for OM objeds provides the
basic operations to access traverse, modify and copy
objects.

In the definition of objed interfaces we followed as
much as possble the arrent OM definition. For

www.manaraa.com

instance, since aOM distributed multi variate polynomial
is defined as follows:

<CDDefinition>
<Name> DMP </Name>
<Description>
The constructor of DMPs. The first argument is the
polynomial ring containing the polynomial and the second is a
"SDMP". Should be of the form DMP(PolyRing(...), SDMP(...))
</Description>
<FunctorClass> Constructor, Binary </FunctorClass>
</CDDefinition>

we have defined an interfacel bvp (where “1” is the
prefix for interfaces) as follows:

interface IDWP : |1 Obj {
| Pol yRi ng get Pol yRi ng() ;
voi d setPol yRing(in I PolyRing pr);
| SDVP get SDVP() ;
voi d set SDMP(in | SDVP sdnp);
s

For eat objea subcomponent, a pair of (set, get)
methods has been spedfied to retrieve and asdgn the
subcomponent, such as get SDVP() /set SDMP() in the
previous example.

The roat of the inheritance diagram for OM objeds
is the | bj interface from which they inherit methods
common to al OM objeds. The main methods exported
by j are:

copy(): performs adee copy d the objed; the wpyis
performed wsing a fadory oljed supdied as
argument (see next sedion), that will be used to
crede the new objed. This allows creding a
copy d a given obed in an dternative
implementation.

serialize(): generates an OpenMath SGML
encoding that can be saved into a text file or sent
to a remote OpenMath server. This way it is
posshle to get interadion hetween programs
using implementation o our interfaces and
stream-based servers;

equal s(): chedks gructural equivalency between
two objeds. The result can be true, false or
dont Know. The dont Know value is returned in
case the @auivaence between the two
mathematical objects cannot be established;

getAttributes(), setAttributes(): to accesgmodify
the sequence of attributes asciated to the objed
(attributes are a requirement of the OpenMath
standard);

All atomic objeds, such as integers and strings,
inherit diredly from 1 ovj, as well as any other type
defined in additional CDs.

OpenMath reals adso the aility to represent
expressons, which may be passed between agebra
systems for evaluation or to typesetting or graphics
systems for display. Such expressons are represented by
means of the dass ovexpr, which has three subclasses

OMConst ant , OWar i abl e, OMTerm The last one is used
to represent functional expressons and provides the
following interface:

OVExpr get Functor(in OMlerm;
void setFunctor(in OMlerm in OVExpr);

OVEXxpr get Paraneter (in OMrer m in
l ong);

void setParaneter(in OMlerm in |ong,
in OVEXpr);

Sincethe arrent OM spedfications does not provide
a omplex type hierarchy, we dedded to kee the
inheritance diagram as smple & possble to refled that
choice Inheritance has been mostly used to ssimplify the
implementation of interfaces, and not to deted type
errors at compile-time. For instance, since there is no
caegory for polynomial coefficients in the OpenMath
spedficaions, constructors in our spedficaions alow
building a monomia with any OM objed as coefficient.
Eacdh implementation is responsible to perform run time
checks to detect errors.

The OpenMath objed architedure dlows
manipulating objeds diredly through their interface
without having to transform them into the generic
OpenMath representation, as shown in Figure 2.

Program A Program B
Specific Specific
Representation direct access Representation
OO Interface » OO Interface

\ 4 L A
Encoded communication Encoded
Object Object

Figure 2: OpenMath Objects I nteractions

5. Building OM Objects

Some spedal objeds, cdled factory objeds, provide
methods to crede other OM objeds. Since the
OpenMath spedficaions groups objeds into Content
Dictionaries (CD), our spedficaions associates fadory
objeds to CDs. The 1BasicCD interface provides
methods to huild OM objeds belonging to the Basic
CD, for instance:

Il nteger createlnteger(in Iong val ue);

while the 1 Pol ycD interface provides methods to
build OM objects belonging to the Poly CD, such as:

| Monom cr eat eMonomi al (in |1 Cbj coeff,
in |ong nExponents);
| SDMP creat eSDMP(in | ong nMononi al s);

Fadory objeds, provide a mean to seled among
different implementations at run time. For instance, the
foll owing function shows a possble use of the | Basi cCD
factory:

www.manaraa.com

f oo(| Basi cCD* basi cCD)

Il nteger* one =

basi cCD- >creat el nt eger (1);
IlInteger* two =

basi cCD- >cr eat el nt eger (2);

OMEXpr sum =

basi cCD- >creat eTern("pl us", 2);
sum >set Par anet er (one, 0);
sum >set Paraneter (two, 1);

cout << sum>serialize() << " ="
<< basi cCD->plus(a, b);
}

Passng an 1 Basi cCD fadory to the aove function
will output:

<plus>1 2 </plus> =3

sincesumwill be an OM objed corresponding to the
expresson 1 + 2. Seridising an objed returns its
external representation, in our case a SGML
representation.

By using fadories, the framework can also provide a
genera conversion fadlity between objed
representations, via the method copy(). This method
accets as argument the fadory for the target
representation: it traverses reaursively the objed and
recqonstructs a @wpy of it using the supplied fadory. For
instance, given the fadories for two implementations of
the PolyCD, pcD1 and pPcD2, we can build a polynomial
in the first one, convert it to the second and add it to
another polynomial in the second implementation:

pl = PCD1- >creat ePol y("3x2+y");
p2 = PCD2- >creat ePol y("5x+y3");
p3 = pl->copy(PCD2);

p3->add(p2);

6. Component Interface

Our framework provides aso a nfiguration
interface to the component, which is required for the
padkaging and distribution of mathematicd components.
Methods from these interfaces allow a computer algebra
system to retrieve information about the component such
as version, author, copyright. It is typicd of
development tools supparting software mmponents to
provide such inspeding feaure. In Java most of the
information for inspedion is obtained through
introspection

We dso provide a sewmnd interface which helps
organising libraries which export a large number of
functions.

The two interfaces for mathematicd components are
| Conponent andl package, as shown in figure 3.

get Content Di ctionary() returns the fadory of a
component. For instance if conp is a reference to a
| Conponent Object:

| Basi cCD* basic =
conp- >get Cont ent Di cti onary(OM BASI C CD);

Il nteger* val = basic->createlnteger(10);

will crege a integer using the @mponent
implementation for multiple precision integers.

i nterface | Conponent {
| Cont ent Di cti onary get ContentDi ctionary
(in OrContentDictionaryld cdld);

| Package get Package(in string
i nt erfaceNane);
| PackageSeq get Packages();

void init();
void finish();

string getNanme();
short getVersion();
short getlnternal Version();

string getAuthor();
string get Copyright();
bool ean get Li cenci ng();

string get URL();
b

interface | Package {
I Obj invoke(in string nethod,
in | Obj Seq paraneters);
short getVersion();
short getlnternal Version();

string getAuthor();
string get Copyright();
bool ean get Li cencing();

}s

Figure 3: IComponent and | Package inter faces

In a omponent a set of functions concerning a
particular mathematicd area ca be grouped into
padkages. The method getPackages() returns the
sequence of al padkages included in the component. A
client program can examine individually ead padkage
using the methods in |Package. The method

get Package() retrieves a package given its name, e.g.:

| Package* linalg =
conp- >get Package("Li near Al gebra");

The methods init() and finish() are used for
component initi ali sation/finali sation, while get Narre(),
get Version(), getAuthor(), getCopyright() and
getLicencing() ae wused to retrieve genera
information about the @mponent. The method
get URL() alows a dient program to conned with a
remote server (such as an Internet Web server) to
download updated version of the component.

The only relevant method for the | Package interface
isi nvoke(), which alows dynamic invocation based on
the function name passed as a string. This method is
useful for invoking padkage functions from within
scripting languages, such as those avail able with many
computer algebra systems.

Each package will be describe by an interface
derived from the interface | Package, which lists the
functions exported by a package. For example:

www.manaraa.com

cl ass | PackagePoly :
{
/1 Inplenmentation for |Package nethods
string getNanme() {
return "Pol ynom al Package";

}

/1 User nethods

| SDMP* al gori t hni(| Monont nono) ;
| DMP* al gorithnR(11nteger* val);

}s

public virtual |Package

describes a padkage which includes implementations
for methodsal gori thril(), al gorit hn2().

7. The O° Framework

We built an experimental framework, cdled O
which provides a C++ implementation of the &ove
interfaces.

The framework consists in:

e aset of abstrad implementations, i.e. classes which
provide a implementation d some &strad
interfaces in order to simplify the development of
actual implementations;

e a oncrete implementation d a subset of the OM
interfaces.

The relationships between abstrad interfaces,
abstrad implementations and implementations are
shown in figure 4. Abstrad interfaces are represented by
C++ abstrad classes. Abstrad implementations provide
a default implementation for some methods, reducing
the mde to be written for custom implementations.
Abstrad implementations have the “ord’ suffix. The
omj classis the éstrad implementation for 1 cbj and
provides default implementation for methods such
copy(), serialize(), equal s(). OSDWP isthe mncrete
interfface for the simple distributed multivariate
polynomial and orsDvPa and onSDVPb are two passhle
different implementations of the same interface.

IObj Interfaces
ISDMP linteger
"" Abstract
OmObj Implementations
OmSDMP Ominteger
"""" /\Implementatlons
OmSDMPa OmSDMPb

Figure 4: O° Inheritance Diagram

The final result is a set of abstrad classes from
which_a_aistom_implementation_can_inherit, thereby

reducing the amount of code to be written. For instance,
by inheriting from class omvonom implementing
interface | Monom requires just writing implementations
for constructors get /set Coef ficient() and methods
get /set Exponent () .

The oncrete implementation includes the
congtructors for objeds gpedfied in the Basic and Poly
CD, acmrding to the OpenMath spedfications version
1.2.

8. Mapping O*to an object model

The dements of the O® framework must be mapped
to an adua objed model. For lak of a satisfying
component model encompassng both Windows and
Unix, we dedded to produce two mappings, one to
COM throughthe ATL (ActiveX Template Library) for
Windows and one we dedded to produce two mappings,
one to COM through the ATL (ActiveX Template
Library) for Windows and one to CORBA for Unix,
using shared libraries to create dynamic modules.

ATL [ATL] isalightweight classlibrary for building
ActiveX components. To use ATL, we must trandate
IDL interfaces into Custom OLE Interfaces, which
consists of C++ definitions plus additional annotations
required for building the methods maps of the ActiveX
component. This task can be done by a modified version
of an IDL compiler. For instance, the ncrete dass
CMononi al will contain:

BEG N_COM MAP(Cvbnomi al)

COM | NTERFACE_ENTRY(| Mononi al)
END_COM _MAP()

Similarly, accessng the fadory of a component, like
PolyCD, is performed like this:

CoCr eat el nst ance(CLSI D_CPol yCD, NULL,
CLSCTX_| NPROC_SERVER,
11 D_I Unknown, (voi d**) &pol yCD) ;

while aeding a monomial with such fadory
involves:

pol yCD- >Queryl nterface(l1D_| Mononi al ,
(LPVA D*) &Mon) ;

This code can be obtained through preprocessng
from a single set of IDL and C++ source After
preprocessng, this code can be given to the C++
compiler for Windows to produce an ActiveX software
component, which can be registered and used in any
component based application. For instance such
component can be enbedded into a spreadshee and be
used to perform symbalic computations whose input and
output are exchanged through cdls of the spreadshed.
We have caried out an experiment of this kind with the
PoSS library [POS], using it as a component to
compute the Grébner basis of polynomials entered in an
Excd workshed, with part of the output being displayed
graphicdly in a dart, creged by means of a dart
component, as shown in Figure 5.

www.manaraa.com

X Microsoft Excel - nizza.xls !IEI x

E]E\Ie Edit Wiew Insert Format Tools Data Window Help - Elil
DEHSRY[sBRBRT v- A&z 4 4l IeH - &)

arial - B7U|EEEEF %, @AEEL->-A

Az - =
A B e D =
1 |FRISCO Project - Software Components Demo =
Paly Ring: {12,32003} {2, {4 M, {a, b, ¢, d}} . {C,

2 P O T 213

3 Output Format: TEX j_

4 |Poly List: ath+tc+d

5 ab + bc +cd + da

5 abc + bed + cda + dba

7 abcd -1 Compute Basis

8

9

10

11

12 Pairs Statistics —
13 |
14 |Groebner Basis: |a+b+c+d s |
15 -b2 -2 bd -d2 . [
16 -bc2 -c2d+ bd2+ d3 L
17 bod2+ ¢c2d2+ -bd3+ cd3 @ L
18 -03d2 -c2da+ o+ d L
19 -bd4 -d5+ b+ d |
20 -c2dd -bc+ bd -cd -~
4[4[» ¥\ Groeb Comp Groebner Inputs /' J 4 | | _“_
Ready [N

Figure5: Mathematical component inside Excel

For Unix we use aCORBA implementation based on
dynamic modules that can be loaded at runtime. The
IDL interfaces are astomaticdly trandated into C++
objeds. This way it is possble to take alvantage of
some fedaures of CORBA, such as runtime type
information, reference counting, and safe type cast.

Currently we ae not using objed distribution
cgpahilities of CORBA, since our primary goa is to
maximise performance. Thus we ae wnneding clients
and server components through dynamic modules.
Accessng a fadory is just instantiation of a dass and
the rest are ordinary method cdls. This does not give us
the full power of components snce for instanceit limits
us to code written in C++ and compiled with the same
compiler, due to the idiosyncrasies of different C++
compilers. However, this problem could be aldressd
using distributed oljeds, i.e. keguing the dient and the
server in two separate aldressng spaces and using the
ORB to conned them. This way, of course, there is a
performance overhead. Note that, since danging our
implementation to enable objed distribution would
require minimum changes.

With ATL components instead it is posshle to
combine components written in languages such as C,
Java or Lisp for which there is an official IDL mapping.
An OLE component, written in any programming
language, which implements the OpenMath Objed
spedficaions, can be used by our mathematicad
components. The aility to use different languages for
clients and serversisindeed one of the major attradions
of software components.

9. O%tools

To suppat program development with the
framework we developed a set of programming tools:

e an IDL compiler to C++ and to ATL

e an IDL documentation tool, which generates LaTeX
documentation from comments in the IDL source

e avisua IDL generator toadl, for creding interfaces
for OM comporents, withou detailed knowledge of
the IDL syntax.

The IDL compiler and decumentation tool are based
on toals from a public domain implementation [FRE] of
CORBA.

The IDL generator is a tod we developed to help
spedfying interfaces to mathematicd components
without knowing the predse IDL syntax. Some screen
shots are shown in figure 6. It is possble to spedfy the
component hame, the set of exported padkages and, for
ead padckage, the list of exported methods. Parameters
and return type for eat method can be seleded from a
list of available types. The IDL generator is not essential
for writing components, sincethe IDL spedficdions can
be written with a text editor. The IDL generator is being
further developed and a aossplatform version will be
built in Java (currently the generator is available for
Win95/NT).

The arrent version of the O° framework is avail able
for Sun Solaris, Linux and Windows 95/NT platforms.

www.manaraa.com

ot O]

Interface: [IMyComponent [eq. IMyComponent]
Implementation Class: |MyComponent [eg. MyComponent]

" Implementation Style

@ Use standard interface only
1 Use custom implementation

Output Directary: Browse...
< Back | MNest > I Einizh |

%03 Component Wizard

4= Edit Mothod 1 [m] T

Hethod

Retum Type: | IDMP M

L]

Figure6: O° IDL generator

10. Conclusionsand Future Work

We dmed at showing that, once astandard interface
for mathematicd objeds is gedfied, mathematicad
software can be developed which is independent from a
spedfic objed implementation. This approach goes one
step further than current OpenMath implementations,
since mathematicd objeds are not exchanged through a
textual representation sent over a data stream. This
provides a high level view of mathematicd objeds and
different implementations thereof can coexist within the
same program. Furthermore, it is posdgble to avoid the
network overhead by using a component architedure in
which different modules can efficiently exchange objed
references within the same address space.

Our experience may leal to the propacsal of an IDL
spedficaions for the OpenMath standard. This will
require of course interadions with other groups (such as
people working on the PolyMath library) in order to
med different requirements. Interfacestandardisation is
afundamental requirement to achieve interoperability of
components from different sources.

We would like dso to experiment the O° framework
with ActiveX aso on Unix, for instance using Entirex
DCOM.

In order to prove the viability of the gproac, we
plan to extend one of the aurrent computer algebra
systems with the aility to dynamicdly load
mathematicd components, providing a simple mean to
use components.

Providing access and suppat for mathematica
components in computer algebra systems is a promising
approach to extend their viability.

Acknowledgments

This work was caried out within ESPRIT projed
FRISCO. We thank prof. Carlo Traverso and Tito
Flagella for many useful discussons and suggestions
about software components for computer algebra.

References

[ABO]

[ATL]

[BRO]

[COR]

[DAL]

[DEN]

[ENT]

[FRE]

[JOL]
[JVB]
[MUP]

[OMA]
[OPE]
[POS]

[SOM]

[SOR]

Abbat J., van Leauwen A., Strotmann A.,
“Objedives of OpenMath”, Technicd Report
12, RIACA, 1996.

Grimes, Stockton, Reily G. V., and
Templeman, “Beginning ATL COM
Programming, Wrox Press, 1988.
Brockschmidt K., “Inside OLE”, 2™ edition,

Microsoft Programming Series, Microsoft
Press, 1995.
CORBA 2.0 Spedficaions, Objea

Management Grouitp://www.omg.org

Damas S., Gadano M., Watt S. M., “An
OpenMath 10 Implementation”, in
Procedalings of ISAC'97, ACM press July
1997.

Denning A., “OLE Corntrols Inside Out”, 2™

edition, Microsoft Programming Series,
Microsoft Press, 1995.
Software AG, EntireX DCOM,

http://www.softwareag.com/corporat/solutions/entirex
LintonM., PanD. Z., “Interfacetrand ation and
Implementation Filtering’, Procealings of
USENIX C++ Conferencel994, 22%236

The Java OpenMath Library, version 03,
http://pdg.cecm.sfu.ca/openmath/lib/

JavaBeans Spedficaions, version
http://lwww.javasoft.com/beans/docs/spec.html

MuPAD - a Computer Algebra System,
http://www.mupad.de

OpenMath Home Paghttp://www.openmath.org
OpenDoc http:/iwww.software.ibm.com/ad/opendoc
Attardi G., Traverso C The PoSSo Library
for Polynomial System SolvirigProc. of
AIHENP95 World Scientific Publishing
Company, Singapore, 1995.

SOMobijects Developer’s Toolkit,

Programmer’s Guide, available at
http://www.software.ibm.com/ad/somobjects

Sorgatz A.,'Dynamic Modules - The Concept
of Software Integration in MuPAD in
Proceedings of IMACS'9duly 1997.

101,

www.manaraa.com

